Le Lézard
Classified in: Health
Subjects: SVY, TRI

New Method to Detect Off-Target Effects of CRISPR


SAN FRANCISCO, April 19, 2019 /PRNewswire/ -- Since the CRISPR genome editing technology was invented in 2012, it has shown great promise to treat a number of intractable diseases. However, scientists have struggled to identify potential off-target effects in therapeutically relevant cell types, which remains the main barrier to moving therapies to the clinic. Now, a group of scientists at the Gladstone Institutes and the Innovative Genomics Institute (IGI), with collaborators at AstraZeneca, have developed a reliable method to do just that.

Gladstone scientists Bruce Conklin (left) and Beeke Wienert (right) developed a new technique, named DISCOVER-Seq, to identify off-target damage caused by CRISPR genome editing. [Credit: Gladstone Institutes]

CRISPR edits a person's genome by cutting the DNA at a specific location. The challenge is to ensure the tool doesn't also make cuts elsewhere along the DNA?damage referred to as "off-target effects," which could have unforeseen consequences.

In a study published in the journal Science, the two first authors, Beeke Wienert and Stacia Wyman, found a new way to approach the problem.

"When CRISPR makes a cut, the DNA is broken," says Wienert, PhD, who began the work in Jacob E. Corn's IGI laboratory and who is now a postdoctoral scholar in Bruce R. Conklin's laboratory at Gladstone. "So, in order to survive, the cell recruits many different DNA repair factors to that particular site in the genome to fix the break and join the cut ends back together. We thought that if we could find the locations of these DNA repair factors, we could identify the sites that have been cut by CRISPR."

To test their idea, the researchers studied a panel of different DNA repair factors. They found that one of them, called MRE11, is one of the first responders to the site of the cut. Using MRE11, the scientists developed a new technique, named DISCOVER-Seq, that can identify the exact sites in the genome where a cut has been made by CRISPR.

"The human genome is extremely large?if you printed the entire DNA sequence, you would end up with a novel as tall as a 16-story building," explains Conklin, MD, senior investigator at Gladstone and deputy director at IGI. "When we want to cut DNA with CRISPR, it's like we're trying to remove one specific word on a particular page in that novel."

"You can think of the DNA repair factors as different types of bookmarks added to the book," Conklin adds. "While some may bookmark an entire chapter, MRE11 is a bookmark that drills down to the exact letter than has been changed."

Different methods currently exist to detect CRISPR off-target effects. However, they come with limitations that range from producing false-positive results to killing the cells they're examining. In addition, the most common method used to date is currently limited to cultured cells in the laboratory, excluding its use in patient-derived stem cells or animal tissue.

"Because our method relies on the cell's natural repair process to identify cuts, it has proven to be much less invasive and much more reliable," says Corn, PhD, who now runs a laboratory at ETH Zurich. "We were able to test our new DISCOVER-Seq method in induced pluripotent stem cells, patient cells, and mice, and our findings indicate that this method could potentially be used in any system, rather than just in the lab."

The DISCOVER-Seq method, by being applied to new cell types and systems, has also revealed new insights into the mechanisms used by CRISPR to edit the genome, which will lead to a better understanding of the biology of how this tool works.

"The new method greatly simplifies the process of identifying off-target effects while also increasing the accuracy of the results," says Conklin, who is also a professor of medical genetics and molecular pharmacology at UC San Francisco (UCSF). "This could allow us to better predict how genome editing would work in a clinical setting. As a result, it represents an essential step in improving pre-clinical studies and bringing CRISPR-based therapies closer to the patients in need."

About the Study

The paper "Unbiased detection of CRISPR off-targets in vivo 1 using DISCOVER-Seq" was published by the journal Science on April 19, 2019. Gladstone's Hannah L. Watry and Luke M. Judge (who is also at UCSF) contributed to this study. Other authors also include Christopher D. Richardson, Jonathan T. Vu, and Katelynn R. Kazane from IGI, Charles D. Yeh from ETH Zurich, as well as Pinar Akcakaya, Michelle J. Porritt, and Michaela Morlock from AstraZeneca.

The work was supported by Gladstone, the National Institutes of Health (grants EY028249 and HL13535801), the Li Ka Shing Foundation, the Heritage Medical Research Institute, the Fanconi Anemia Research Foundation, a Sir Keith Murdoch Fellowship from the American Australian Association, and an Early Career Fellowship from the National Health and Medical Research Council.

About the Gladstone Institutes

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact?unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with the University of California, San Francisco.

Media Contact: Julie Langelier | Science Writer and PR Specialist | [email protected] | 415.734.5000

 

Gladstone Institutes logo (PRNewsfoto/Gladstone Institutes)

SOURCE Gladstone Institutes


These press releases may also interest you

at 06:15
The "Molecular Diagnostics for Cancer: Markets Forecasts by Cancer Type, Product, and Place with Executive & Consultant Guides and Customization. 2023 to 2027" report has been added to  ResearchAndMarkets.com's offering. Exciting technical...

at 06:10
Confo Therapeutics, a leader in the discovery of novel medicines targeting G-protein coupled receptors (GPCRs), announced today that it has been awarded a EUR 1.6 million grant from Flanders Innovation & Entrepreneurship (VLAIO). The 2-year grant...

at 06:08
Aesthetic Management Partners LLC, a manufacturer of skin-based solutions and a provider of energy-based devices announces its collaboration with Croma (Croma-Pharma® GmbH), a global player in the minimally invasive aesthetics market and a leading...

at 06:05
The 2023 U.S. soybean field trials conducted by Texas Crop Science (TCS) demonstrated an average yield increase of 21% in soybean lines incorporating the TCS yield trait. This breakthrough in performance would generate approximately $121 per acre in...

at 06:05
3EO Health, a "Point of Life" diagnostics company focused on the development of high-performing low-cost molecular diagnostics, is excited to announce the next step in their quest to make molecular testing affordable. Today, the company has published...

at 06:05
Zura Bio Limited ("Zura Bio") a clinical-stage immunology company developing novel dual-pathway antibodies for autoimmune and inflammatory diseases, today reported full year 2023 financial results and recent business highlights. The Company has also...



News published on and distributed by: