Le Lézard
Classified in: Health, Science and technology
Subject: TRI

Researchers Make Major Breakthrough in Controlling the 3D Structure of Molecules


NEW YORK, Sept. 20, 2018 /PRNewswire/ -- New drug discovery has been limited by researchers' inability to control a molecules' 3D structure. But a team of scientists from The Graduate Center of The City University of New York (GC/CUNY) has made a breakthrough in chemical synthesis that now makes it possible to quickly and reliably modify a molecule's 3D structure, according to a paper in Friday's issue of Science.

The work builds on the Nobel Prize-winning discovery by chemist Akira Suzuki, who pioneered development of cross-coupling reactions, which use palladium catalysts to bond carbon atoms. Suzuki's original discovery has enabled the rapid construction of novel molecules for drug research, but is largely limited to construction of flat (or 2D) molecules. That limitation has prevented scientists from easily manipulating a molecule's 3D structure for drug development.

"Two molecules that have the same structure and composition but are mirror images of each other can produce very different biological responses. Therefore, controlling the orientation of atoms in a molecule's 3D structure is critical in drug discovery," said research project director and corresponding author Mark Biscoe, an associate professor of chemistry with GC/CUNY and City College of New York. "The thalidomide tragedy in the 1950s and '60s arose because of the different biological effects of thalidomide's two mirror images. Today, cross-coupling reactions are employed extensively in drug discovery, but they haven't enabled control of 3D molecular structures. Our new process achieves this control, permitting selective formation of both mirror images of a molecule."

GC/CUNY researchers collaborated with University of Utah researchers to develop statistical models that predict chemical process reaction outcomes. They applied these models to develop conditions that enable control of 3D molecular structures. Key to their process was understanding the effects of different phosphine additives on how palladium promotes cross-coupling reactions. This allowed them to develop methods for selectively retaining a molecule's 3D geometry during a cross-coupling reaction, or to invert it to produce its mirror image, thereby controlling the molecule's final geometry.

This new method addresses significant challenges to drug discovery by allowing scientists to employ cross-coupling reactions to generate new compounds while controlling their 3D architecture. This will greatly facilitate discovery and development of new medicines.

Media Contacts:     Shawn Rhea, [email protected]

 

SOURCE The Graduate Center of The City University of New York


These press releases may also interest you

at 21:27
Labcorp , a global leader of innovative and comprehensive laboratory services, announced today that it has been selected as the winning bidder for select assets of Invitae, a leading medical genetics company.  Before the transaction can proceed,...

at 21:19
Invitae , a leading medical genetics company, announced that Labcorp , a global leader of innovative and comprehensive laboratory services, has been selected...

at 21:05
Valcare Medical, Inc., a leading innovator in transcatheter-based mitral...

at 21:02
Ascentage Pharma (6855.HK), a global biopharmaceutical company engaged in developing novel therapies for cancer, chronic hepatitis B (CHB), and age-related diseases, announced today that results from four clinical studies of the company's three key...

at 19:59
Genomma Lab Internacional, S.A.B. de C.V. (BMV: LAB B) ("Genomma" or "the Company"), today announced its results for the first quarter of 2024. All figures included herein are stated in nominal Mexican pesos and have been prepared in accordance with...

at 19:46
Although gun violence is down by 12%, gun-related homicide is up by 44%. Therefore, the City of Lauderhill is announcing a pivotal strategy to reduce gun violence and promote peace among its 75,000 residents. This plan highlights Lauderhill's...



News published on and distributed by: